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Sound generation from the evolution and interaction of elliptic vortex rings is calculated
numerically. An elliptic vortex ring emits a strong sound signal due to significant distortion
and stretching of the vortex filament. At the far field, the acoustic pressure is linearly
dependent on the third time derivatives of the vortex positions. Therefore, a numerical
scheme of high resolution is employed to describe in detail the elliptic vortex ring motions,
which are highly non-linear. Discretized vortex filaments are interpolated by using a
parametric blending function to remove a possible numerical instability. The distorted
vortex filament, owing to the self-induced velocity and the induced velocity from the other
vortex segments, is redistributed at each time step. The accuracy and efficiency of the
scheme are validated by comparisons with the analytic solution of circular vortex ring
interaction. Acoustic signals from the evolution of a single elliptic vortex ring are obtained
with various aspect ratios of the axes. Vortex motions and acoustic signals from two
identical elliptic vortex rings, placed initially with selected separation distances, are
calculated. Distinct periods are obtained from the evolution of each single elliptic vortex
ring and the pairing process of two elliptic vortex rings. The calculated periods in the
acoustic signals depend to a significant degree on the initial aspect ratio of the ring and
the separation distance.
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1. INTRODUCTION

Sound generation from unsteady vortical flows has been studied by many researchers [1–5].
One typical vortex flow is the evolution and interaction of vortex rings, which has been
recognized as a fundamental flow noise source. The acoustic field can be obtained by using
acoustic analogy or by matched asymptotic expansion. It is shown that the sound source
term at low Mach number is linearly dependent on the third time derivatives of the
vorticity distributions and their position vectors. Therefore, to obtain the sound pressure
accurately, detailed descriptions of the vortex motion are required.

The motion of an elliptic vortex ring is three-dimensional and highly non-linear because
of the differing curvature along the ring. Hence, it is necessary to develop a numerical
method of high resolution, describing the distorted vortex motion in detail. It is obvious
that numerical errors in the motion may lead to misinterpretations of calculated acoustic
results.

Earlier work about the motion of the elliptic vortex ring was done by Arms and Hama
[6]. They used a Local Induction Approximation (LIA), with the assumptions that the core
size of the ring is extremely small and that the long distance induction is neglected. Then
the filament of the ring is moved only with a local self-induced velocity, proportional to
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the local filament curvature. The contributions from the other parts of the vortex filament
are neglected. An extensive study about the evolution of the single elliptic vortex ring was
undertaken numerically by Dhanak and De Bernardinis [7]. They obtained reasonable
results compared with experimental data for various initial aspect ratios (minor to major
axes ratios) of elliptic configurations. The cut-off approach developed by Moore and
Rosenhead was adopted to remove the singularity problem [8] in the Biot–Savart law in
describing the vortex motion. The interesting phenomenon in the motion of an elliptic
vortex ring is the ‘‘axis switching motion’’. The translational velocity of the major axis is
higher than that of the minor axis because its velocity is inversely proportional to its radius
of curvature. As a sequence, both end parts of the major axis move ahead of the initial
elliptic vortex ring. After some evolution the major axis is switched to minor axis and vice
versa.

The sound from the motion of a single elliptic vortex ring was calculated by Möhring
[9]. He used the LIA to obtain the vortex motion and the vector Green function [3] to
obtain the final expression from the far field sound pressure. A nearly periodic change of
directions of preferential radiation was obtained due to axis switching for a moderate
aspect ratio of minor to major axis. However, it lost a periodic tendency below an aspect
ratio of 0·6. The patterns of the sound radiation were closely related to the initial shape
of the ring. He also calculated a sound field from a system of two elliptic rings with the
same methods, to explain the experimental observation of preferential radiation direction
for a laminar elliptic jet, done by Bridges and Hussain [10]. According to the experimental
results, the acoustic pressure radiated preferentially to the minor axis of the ellipse.
Möhring showed numerically that the radiation in the direction of the minor axis
dominates for moderate initial separation distances between the two vortex rings. He found
that the sound is radiated with a ‘‘leap-frogging motion’’ of the elliptic vortex rings, which
is similar to the motion of two circular vortex rings. The leap-frogging motion, as it is
sometimes called, is the mutual threading motion in the pairing process where the trailing
vortex ring contracts and rushes through the leading vortex that is already enlarged, and
this slip-through process is repeated with an exchange of roles.

The pairing phenomena [10] of the leap-frogging motion for the two circular rings can
be analytically described by using equations of motion which were derived by Dyson for
thin circular vortex rings [11]. The radiated sound pressure from the two vortex rings was
obtained by Kambe and Minota [4] by using the analytic formula for the vortex motions.
They observed that the acoustic pressure has a peak value in the direction of the convecting
motion when the one vortex ring slips through the other during the mutual threading
motion. They also observed that the amplitudes of the acoustic pressures are highly
dependent on the initial separation distance between the rings. Recently, the noise
mechanism from the pairing process in a circular jet was investigated by Tang and Ko [12],
both theoretically and experimentally.

A variety of flow and sound patterns are expected for the system of elliptic rings owing
to axis switching and the pairing phenomena. Therefore, more accurate motions of the
elliptic vortices should be obtained to calculate the sound pressure from the interaction
of the elliptic vortex rings of various aspect ratios and initial separation distances.

It is the aim of this paper to develop a stable, accurate and efficient numerical tool for
describing the elliptic vortex motions and to calculate the acoustic signals for various initial
conditions. Some results of the vortex motions are highly distorted from the given initial
conditions, which can be obtained by employing a parametric blending curve function to
interpolate the discretized vortex filament at each time step. The equation of filament
motion is integrated by using the Gaussian quadrature rule. Several numerical points are
inserted along the filaments whenever the filaments are severely distorted after
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Figure 1. A schematic view of the co-ordinate system.

redistributing the vortex segments. The cut-off theory is adopted in this paper instead of
the LIA. The accuracy of the scheme is validated by comparing the analytic solutions of
the two circular vortex rings. The efficiency is also checked by comparing the numerical
results with those obtained by Dhanak and De Bernardinis [7] for the single elliptic vortex
rings. The far field sound pressure are calculated for the single elliptic vortex with various
aspect ratios by using the vortex source term obtained by Möhring [3]. The vortex motions
and the acoustic pressures are also calculated for the system of two elliptic vortex rings
with several initial separation distances and aspect ratios.

2. MATHEMATICAL REPRESENTATIONS

2.1.  

The acoustic field due to flow fluctuations can be described as follows:

1
a2

0

12p
1t2 −92p= q, (1)

where p is the acoustic pressure, a0 is the ambient acoustic velocity, and q is the acoustic
source term. At low Mach number, Lighthill [13] proposed the acoustic source term as
q1 r01

2vivj/1xi 1xj , where v is the velocity of an incompressible flow and r0 is the density
of the ambient fluid. By using the free space Green function G(x, y, t− t), the solution
of equation (1) in the integral form can be obtained as

p(x, t)=g G(x, y, t− t)q(y, t) d3y dt, (2)

where t= t− =x− y=/a0 is the retarded time, x is the observation position vector and y

is the acoustic source position vector, as shown in Figure 1.
Möhring [3] introduced the vector Green function G(x, y, t− t), which obeys the

relation 9yG=9y ×G, and obtained the final form of the equation (2) for low Mach
number flows in the far field:

p(x, t)=
r0

12pa2
0x3

13

1t3 g (x · y)y · (v× x) d3y, (3)
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where x= =x= and v is the vorticity in the flow field. Equation (3) can be expressed in
compact form for the vortex filament:

p(x, t)=
r0

12pa2
0
s
i,k

Q	 ik(t− x/a0)xixk

x3 , (4)

with

Qik =g yi(y×v)k d3y=G g yi(y×dy)k , (5)

where G denotes a circulation of the vortex filament, and dy a curve element in the
tangential direction of the vortex filament. Q	 ik denotes the third time derivative of Qik . The
only non-vanishing components of Qik are its diagonal elements Q11, Q22 and Q33, which
additionally satisfy the relation Q11 +Q22 +Q33 =0 of vanishing trace. The tree
components of the Qii are related to the acoustic pressures in the three axis directions
respectively.

2.2.  

The acoustic field is closely related to the vortex position at each time step, as indicated
in equations (4) and (5). The velocity at j0 of a vortex filament with circulation G is given
by the usual cut-off approach, which was formulated by Moore and Rosenhead (see
reference [8]). It is defined as

1y(j0, t)
1t

=
G

4p gc

1y(j, t)
1j

×
y(j0, t)− y(j, t)

{=y(j0, t)− y(j, t)=2 + m2(t)}3/2 dj, (6)

where y(j, t) is the position vector of a material point, denoted by Lagrangian variable
j at time t. The Rosenhead cut-off parameter m(t) is used to remove the singularity
problem in the Biot–Savart law at j= j0. The parameter m(t)=2dRc(t) is proportional
to the core radius c(t). The coefficient dR depends on the vorticity distribution across the
core of the vortex filament. We adopt dR =(1/2) exp(−A−1/2) with A=1 [7].

As indicated in equation (6), the dynamics of the filament are very dependent on the
core size c(t) and the initial configuration of the filament y(j, t=0). The initial circular
core radius c0 of the elliptic vortex ring at time t=0, proposed by Saffman [14], is adopted
here:

c0 =8zab exp$− p2

2z6
−1+A−01−

e2

21 K(e)
E(e)%, (7)

where a and b are the lengths of semi-major and semi-minor axes of the ellipse respectively.
K(e) and E(e) are the elliptic integral of the first and second kind respectively, and e is
the eccentricity of the ellipse; that is, e2 = (a2 − b2)/a2.

The centroid of the vorticity at time t1 is defined [14] as

yc(t1)=
G

2 g y× t · I

=I=2 y ds, (8)
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Figure 2. The notation for the parametric blending curve.

where yc =(y1c , y2c , y3c) and y=(y1, y2, y3). The symbols t and s represent the tangential
unit vector along the vortex filament and the local distance along the vortex filament
respectively. The symbol I=G F y× t ds represents the impulse vector of vortex ring,
which is conserved over time. The velocity of the vorticity centroid Uc(t1) can be obtained
from dyc(t1)/dt.

3. INTERPOLATIONS AND VALIDATIONS

3.1. 

There are many mathematical expressions to represent the three-dimensional curves of
y(j, t) in equation (6). Generally, cubic spline curves are used to interpolate the curves.
However, the spline curves do have certain disadvantages [15]. Among these are the
non-intuitive effects of tangential vector direction and difficulties of the end conditions.
The interpolation requires inversion of a large tri-diagonal matrix, and a change in any
one segment affects all the spline segments. Therefore, the curve is not adequate to
represent the vortex filament motion in strong interaction problems because the local
disturbed curvature (instability due to the numerical error) of the vortex filaments affects
the global motion and the acoustic signal significantly.

The parabolic blending curves, employed here, maintain the continuity of the first
derivative in space, which is critical in our problem. The parabolic blending curve, C(j),
is given by

C(j)= (1− j)p(r)+ jq(s), (9)

The functions p(r) and q(s) are parametric parabolas through P1, P2, P3 and P2, P3, P4,
respectively, as shown in Figure 2. In reference [15], a generalized parametric blending
curve is developed from the assumption of normalized chord length approximation for the
position parameters, r and s at P2 and P3, respectively, which are linearly related to the
parameter j, i.e., 0E r, s, jE 1. Therefore the functions p(r) and q(s) are cubic equations
of the parameter j. According to the generalized parabolic blending function, equation
(9) may be rewritten in matrix form as

C(j)= [j3, j2, j, 1][A][G], (10)

where [A] is a blending function matrix consisting of p(r), q(s) and j, and [G] is a geometric
matrix that is constructed by the position vector at P1, P2, P3 and P4. We apply this
blending curve to equation (6). The spatial derivatives at an arbitrary position on the curve
C(j) can easily be obtained as

1C(j)/1j=[3j2, 2j, 1, 0][A][G], (11)

The curve information is represented by the mathematical curve equation; that is,
parabolic blending curve. We use this interpolation equation to calculate all of the
three-dimensional curve integration (equations (5), (6) and (8)) at every time step.
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Figure 3. A plane view of the evolution results for the circular vortex ring at t=7, to compare the stability
for two types of curves (G=4p, Dt=0·01, b/a=1; circular vortex ring). (a) Spline curve; (b) parabolic blending
curve.

3.2. 

The continuous vortex filament is divided into several vortex segments in the integral
scheme. To prevent instability due to numerical error, it is efficient to redistribute the
numerical points described by the interpolation function on the vortex filament curve. The
total length of the filament at each time step is calculated to obtain the core radius of c(t),
which is assumed to be constant along the filament but changes at each time step. That
is, it can be determined in view of the constant of the cross-section along the filament and
the total volume conservation of the filament core, with the assumption of
incompressibility of the total core volume in the incompressible flow. In this study, the
evolution of the vortex ring can be determined simply by integrating the right side of the
equation (6) by using the seven-point Gaussian quadrature rule for curve integration, and
the fourth order Runge–Kutta method for time stepping. The three components of the
spatial derivatives can easily be obtained by using equation (11) for the position vector
y(j, t) instead of C(j), as shown in equation (10), the interpolation of which is much more
critical to remove the numerical instability.

We limit the maximum number of points to 180 along the loop of each vortex filament.
At each time, additional numerical points are inserted if the length of a segment is larger
than twice the initial length.

Figure 4. A plot of the variance versus time for the circular vortex ring, to compare the parabolic blending
curve (– – – –) with the spline (——) (G=4p, Dt=0·01, c0 =0·3925, b/a=1).
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Figure 5. Schematic views of the model problems. (a) Two circular vortex rings; (b) single elliptic vortex ring;
(c) two elliptic vortex rings.

3.3. 

The numerical stabilities of circular vortex ring evolution interpolated by the two
different schemes are compared in Figure 3. The same initial conditions
(G=4p, N=41, Dt=0·01) are used for the circular vortex rings, which are expected to
maintain the initial circular shape and move with a constant velocity. In Figure 3(a) spline
curves were used and in Figure 3(b) parabolic blending curves were used. The vortex ring
with the spline curves is highly distorted at numerical time t1 7 due to numerical errors.
However, the vortex ring with parabolic blending curves maintains the initial
circular shape. In Figure 4 is shown the time history of the variance of the two schemes.
The variance S(t) can be represented as

S(t)=
1

2pa3b G 0y1
dy2

ds
− y2

dy1

ds 1(y3 − y3c)2 ds. (12)

This represents the deviation of the flatness from the initial filament curves. In Figure 3(a),
the result shows the difficulties at the cyclic end condition for the spline curves occurring
from the initial stage; and error in any segment affects the final curve shapes. On the other
hand, in Figure 3(b) it is indicated that the parabolic blending curve suffers from no such
difficulties. It is very stable and efficient for unsteady large time marching problems.

4. RESULTS AND DISCUSSION

We used the above numerical schemes to study three typical model problems as shown
in Figure 5. Two circular vortex ring problems were studied to compare the numerical
results with an existing analytic solution of vortex motions and radiated sound. We studied
the effects of the aspect ratio for a single elliptic ring and the initial separation distance
for two elliptic vortex rings.

4.1.           

Kambe and Minota [4] calculated the acoustic fields due to the mutual threading and
head-on collision of two circular vortex rings analytically by using Dyson’s formula for
the vortex motion [11]. To verify our numerical method, we calculated the mutual
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threading problem of Figure 5(a). Two identical vortex rings were initially chosen, the
strength of which was G1 =G2 =G, the radius of which was R1 =R2 =R0, the core radius
of which was c1 = c2 = c0 and the initial separation of which was z1 − z2 =Dz0. We
compared the analytic results of the velocity of the vortex centroid and the acoustic
pressure at far fields for the mutual threading case with our numerical results. The velocity
of the vortex centroid Uc , scaled by U0 =G/4pR0, and the acoustic pressures Q	 33 in
equation (5), scaled by 6GU3

0, are shown in Figure 6 for different initial distances of
Dz0/R0 =0·3, 0·5 and 2·0 respectively. The periods of the corresponding Dz0/R0 and
T/(R0/U0) were 0·130, 0·328 and 3·860 respectively, as analyzed in reference [4]. We could
obtain the same values numerically by using parametric blending curves. The initial core
radius c0 was 0·05 for the analytic solution [4]. The corresponding core radius used in the
Moore–Rosenhead formula is 0·10542. In the numerical calculations a time step of
Dt=0·001 with N=41 was used. Generally, jet flows accompanied the vortex pairing
motions and generated so-called ‘‘vortex pairing noise’’ [10]. The discrete vortex rings
could be generated from the jet flow by acoustically exciting the flow. In reference [10],
Bridges and Hussain also pointed out that a primary jet noise source is due to vortex
bursting. In addition, it should be noted that the mutual threading phenomena was
captured successfully in the laboratory by Yamada and Matsui [16].

Figure 6. Comparisons of the translational speed and acoustic signals by mutual threading motion. (a) The
centroid velocity of two circular vortex rings; (b) acoustic signals. Dz0 is the initial separation between the two
vortex rings (U0 =G/4pR0). ——, Analytic; w, present.
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T 1

The parameters of the elliptic rings for fixed major axis length (a=1)

b/a a b Area c0 T

0·2 1·0 0·2 0·6283 0·1072 —
0·4 1·0 0·4 1·2566 0·2055 0·52
0·6 1·0 0·6 1·8850 0·2855 0·72
0·8 1·0 0·8 2·5133 0·3468 0·92
1·0 1·0 1·0 3·1416 0·3925 —

4.2.          

A schematic view of the evolution of a single elliptic vortex ring is shown in Figure 5(b).
First, we compared our numerical results of the elliptic vortex ring motions with those of
Dhanak and De Bernardinis for different aspect ratios [7]. For all the cases, the major axis
length was taken as a=1·0 for the comparisons (see Table 1). We selected the same aspect
ratios (minor to major axis ratios) as in the reference [7]. In Figures 7, 8 and 9, the
evolution processes of the vortex rings for the case of aspect ratios 0·8, 0·6 and 0·2
respectively are described in detail. One can clearly find that the axes are switched from
the x1–x2 plane views. In Figure 10 are shown the velocities of the vorticity centroid, Uc ,
for four aspect ratios (0·8, 0·6, 0·4 and 0·2). The numerical results were compared with
those of Dhanak and De Bernardinis, and show good agreement. Dhanak and De
Bernardinis used N=161 numerical points along the filament for all four cases. We used
just N=41 numerical points initially. During the evolution, four additional points were
inserted because of local stretching for the case of b/a=0·2. As mentioned previously,
additional numerical points are inserted at each time step if the length of a segment is larger
than twice the initial length. This numerical insertion compensates for the lack of numerical
points internally. As shown in Figure 10, we obtained the same results with a quarter of
the numerical points used by Dhanak and De Bernardinis. In the calculations, all of the
time steps were taken as Dt=0·001. In the cases of the aspect ratios b/a=0·8 and 0·6,
as shown in Figures 7, 8 and 10, there exists a periodic tendency in the kinematic motion.
For the case of b/a=0·2, however, the periodic tendency disappears, as shown in Figure
10. Dhanak and De Bernardinis used Dt=0·0001 for the case of b/a=0·2 but we

Figure 7. The evolution of a single elliptic vortex ring of b/a=0·8 (a=1). (a) The x1–x3 plane; (b) a bird’s
eye view; (c) the x2–x3 plane; (d) the x1–x2 plane.
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Figure 8. The evolution of a single elliptic vortex ring of b/a=0·6 (a=1). (a) The x1–x3 plane; (b) a bird’s
eye view; (c) the x2–x3 plane; (d) the x1–x2 plane.

obtained the same result with Dt=0·001. We understand that the parabolic blending curve
produces a more stable solution than the other interpolation for the time stepping.
Especially in the case of b/a=0·2, the filament cores came close to touching each other.
It is generally known that touching regions have the vorticity of opposite signs. Viscous
diffusion would annihilate the vorticity locally in that region. These results would connect
on either side of the region of contact to form two smaller vortex rings. We stopped our
calculation at that point.

Second, we calculated the acoustic signals from the evolution of elliptic vortex rings. For
all of the sound calculations, a normalized sectional area, that is, the same impulse, was
used for comparisons of the acoustic pressures between the different aspect ratios of the
elliptic vortex rings (see Table 2). The normalized parameters for all of the aspect ratios
are shown in Table 2. The sounds were radiated in the x1, x2 and x3 directions due to the
three-dimensional motions of the vortex filaments. We employed the numerical parameters

Figure 9. The evolution of a single elliptic vortex ring of b/a=0·2 (a=1). (a) The x1–x3 plane; (b) a bird’s
eye view; (c) the x2–x3 plane; (d) the x1–x2 plane.
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Figure 10. A plot of the centroid velocity versus time for an elliptic vortex ring (Dt=0·0001 when the axis
ratio is 0·2, while other axis ratios have Dt=0·001; a=1).

N=81 and Dt=0·001 to calculate the acoustic fields from a single elliptic vortex ring.
In general, a coarse time step or the number of numerical points can lead to numerical
instability and significant error in the calculation of the sound field. However, the results
using the parabolic blending curve show that they are insensitive to the parameters. Figure
11 is shown the acoustic signal Q	 33 for the case of b/a=0·6 with various numerical time
steps and numerical points. In Figure 11(a) is shown the effect of the time steps
(Dt=0·01, 0·001, 0·0001) with N=81, and in Figure 11(b) is shown the effect of the
numerical points (N=41, 81, 161) with Dt=0·001. We found that N=81 and Dt=0·001
was sufficient to calculate the elliptic vortex ring of b/a=0·6. The periodic sound pressures
of the aspect ratios of b/a=0·8 and 0·6 are plotted in terms of Q	 ii in Figures 12 and 13
respectively. The periods of the elliptic vortex rings (see Table 2) were obtained from the
calculated kinematic motion in Figure 10. The major and minor axes were switched at
about half the period time, as indicated in the Q	 11 and Q	 22 signals, whereas the period of
Q	 33 was the same as that of the vortex motion. For the case of 0·8 as shown in Figure
12, and the amplitude in the direction of the major and minor axes, Q	 11 and Q	 22, were
almost the same. The signals of the aspect ratio of 0·6, as shown in Figure 13, became
aperiodic and the amplitudes became large as the aspect ratio of the ellipse decreased. This
indicates that the acoustic signals are sensitive to the vortex kinematic motion. It is well
known that the kinematic motion is aperiodic below an aspect ratio of 0·6 [7]. For the case
of b/a=0·2, the kinematic motion of the elliptic vortex ring is very complex and the

T 2

The parameters of the elliptic rings for the equivalent enclosing area

b/a a b Area c0 T

0·2 2·236 0·447 3·1416 0·2397 —
0·6 1·291 0·775 3·1416 0·3685 1·23
0·8 1·118 0·894 3·1416 0·3877 1·22
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Figure 11. Comparisons of the acoustic signals from the single elliptic vortex ring with various numerical
parameters (b/a=0·6, a=1·292). (a) Variations of the time step, N=81 : – – – –, Dt=0·01; –·–;–·–,
Dt=0·001; ——, Dt=0·0001. (b) variations of the numerical points, Dt=0·001: – – – –, N=41; –·–;–·–,
N=81; ——, N=161.

acoustic pressure of the elliptic vortex ring has a strong time variation, like a strong
pulsating signal, as in Figure 14. We have plotted three special kinematic views of the
motion at time t=0, 0·4 and 0·75 in Figure 15. At time t=0·4, the first axis switching
phenomena was initiated (see Figures 14 and 15. At that instant, the acoustic signal had
a peak in Q	 22. At time t=0·75, the acoustic signal also had a peak. This means that the
time variation of the kinematic motion has a large variation at that incidence. At time
t=0·75, however, the filament cores touched each other, and the results without viscous
diffusion have no physical meaning.

In general, no preferential directions of the acoustic radiation were observed except in
the case of an aspect ratio of 0·2. However, the amplitude of the acoustic signals in the
major axis direction, Q	 11, was larger than that in the minor one, Q	 22, at the beginning.

4.3.       

For the case of the interaction of two elliptic vortex rings, the directivity pattern of the
acoustic signal was similar to that of two circular vortex rings except for the axis switching
effect, which resulted initially in complicated vortex motion and acoustic signals. Two
elliptic vortex rings, A and B, were placed in the back and fore positions respectively, as
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Figure 12. The components of the acoustic signals due to the motion of a single elliptic vortex ring in a period
T (b/a=0·8, a=1·118). –·–·–·, Q	 11; – – – –, Q	 22; ——, Q	 33.

shown in Figure 5(c). For all of the sound calculations, a normalized sectional area was
used for comparisons of the acoustic pressures between different aspect ratios of the elliptic
vortex rings (see Table 2). We adopted N=81 as the initial numerical points to calculate
the sound radiation from two elliptic vortex rings. These numerical points were sufficient
for a normal aspect ratio (b/a=0·6 or 0·8), as verified in Figure 11. During the
calculation, we inserted a numerical point when the length of a segment was larger than
twice the initial length.

The kinematic motion for the case of b/a=0·8, N=81, Dt=0·001 and Dz0 =0·5 is
shown in Figure 16. We show typical views at the instant of slip-through motion at
t=0·08, 0·24, 0·44 and 0·60. We could obtain periodic pairing motion at every 0·36. For
the single elliptic ring case, the axis switching occurred at every 1·22 (see Table 2 and Figure
12). The leap-frogging motion, as it is sometimes called, is the mutual threading motion
in the pairing process, where the trailling vortex ring contracts and rushes through the
leading vortex that is already enlarged, and this slip-through process is repeated with an
exchange of roles. In this case, we found strong periodicity in the kinematic motion and
acoustic signals.

Figure 13 The components of the acoustic signals due to the motion of a single elliptic vortex ring in a period
T (b/a=0·6, a=1·291). –·–·–·, Q	 11; – – – –, Q	 22; ——, Q	 33.
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Figure 14 The components of the acoustic signals due to the motion of a single elliptic vortex ring in a period
T (b/a=0·2, a=2·236). –·–·–·, Q	 11; – – – –, Q	 22; ——, Q	 33.

Two elliptic vortex rings had axis switching phenomena with the leap-frogging motion.
The periods of both axes switching were nearly half of the leap-frogging motion, as shown
in Figure 17. The slip-through motion in Figure 16 occurred at every peak of the centroid
velocity, as shown in Figure 17. The first peak was at nearly t=0·09 and the second was
at about 0·27, and so forth. The maximum and minimum centroid velocities of the vorticity
corresponded to the axes of the inner and outer elliptic vortex rings, respectively. Two
slip-through motions occurred at every period. The variation of the x1- and x2-axis lengths
of the elliptic vortex ring is represented in Figure 18. We can find approximately the axis
switching instant when the plane view of two elliptic vortex rings became circular shapes.
That is, the lengths of the two axes became the same at t=0·22 and 0·72 for the vortex
rings A and B. Those periods are longer than the leap-frogging periods at this initial
separation distance. In Figure 19 are shown the signals of each acoustic component for
the above case. The instant of the first peak in the Q	 33 signal (corresponding to the moving
direction) corresponded approximately to the 1/4 period of the leap-frogging motion (see
Figure 7 for two circular vortex rings). We could obtain a period of about 0·36 from that

Figure 15. Evolutionary views of three instants of a single elliptic vortex ring (b/a=0·2, a=2·236 at initial
instant). (a) The x1–x3 plane; (b) a bird’s eye view; (c) the x2–x3 plane; (d) the x1–x2 plane.
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Figure 16. A frontal view of two elliptic vortex rings with pairing motion (b/a=0·8, Dz0 =0·5). The bold line
is initially the rearward elliptic vortex ring (ring A).

signal, as shown in Figure 19. From the figure, the peak value of Q	 22 at t1 0·88 is larger
than that of Q	 11 these being related to the minor and major axis directions, respectively,
in the first period. In the second period, the peak value of Q	 11 near t1 0·44 was larger
than that of Q	 22. The value of Q	 11 is also related to the minor axis direction, because the
axes are interchanged. Therefore, the preferential directions of sound generation were
interchanged during several periods. In both experiments for the elliptic [16, 17] or circular
jet with the mutual threading experiment [10], leap-frogging phenomena were observed just
once or twice, so the first or the second peaks in Q	 11 and Q	 22 would determine the
preferential direction of the sound radiation.

Figure 17. The centroid velocity of two elliptic vortex rings (b/a=0·8, Dz0 =0·5, rings A and B initially the
rearward and forward elliptic ring respectively). ——, Ring A; – – – –, ring B.
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Figure 18. The time variation of the projected axis length for elliptic rings A and B in leap-frogging motion
(projected plane, x1–x2 plane; b/a=0·8; Dz0 =0·5). (a) Ring A; (b) ring B. ——, x1-axis; – – – –, x2-axis.

An aspect ratio of 0·6 was chosen to investigate the effect of the separation distance on
the vortex motion and the acoustic signal. Three typical initial separation distances were
selected: Dz0 =0·5, 0·8 and 2·0, with N=81 and Dt=0·001. The calculations were
repeated with a time step of Dt=0·0002, leading to practically the same curves. In Figure
20 is shown the configuration of the leap-frogging and the axis switching motion of two

Figure 19. The components of the sound signals due to the motion of two elliptic vortex rings (b/a=0·8,
Dz0 =0·5). –·–·–·, Q	 11; – – – –, Q	 22; ——, Q	 33.
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Figure 20. A frontal view of two elliptic vortex rings with leap-frogging motion (b/a=0·6, Dz0 =0·5). The
bold line is initially the rearward elliptic vortex ring (ring A).

elliptic vortex rings with an initial separation distance of Dz0 =0·5. The acoustic signals
simulate the case of b/a=0·6 and Dz0 =0·5, as shown in Figure 21, with a numerical time
step of Dt=0·001. One can compare the kinematic motion and acoustic signals for the
above case with those of b/a=0·8 and Dz0 =0·5. The difference is that the periodic
motions and acoustic signals of b/a=0·6 have deteriorated after the second slip-through
motion.

The results when the initial separation instance Dz0 =0·8 with b/a=0·6, N=81 and
Dt=0·001, are represented in Figures 22 and 23. In Figure 22, we found two slip-through
motions at about t=0·21 and t=0·66. The two vortex rings are highly distorted at

Figure 21. The components of the sound signals due to the motion of two elliptic vortex ring, (b/a=0·6,
Dz0 =0·5). –·–·–·, Q	 11; – – – –, Q	 22; ——, Q	 33.
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Figure 22. A frontal view of two elliptic vortex rings with leap-frogging motion (b/a=0·6, Dz0 =0·8). The
bold line is initially the rearward elliptic vortex ring (ring A).

t=0·9, especially ring A. In Figure 23, there are two acoustic peaks which are related to
the two slip-through motions. That for Q	 22 is larger than that for Q	 11 at the instant of the
first peak. However, the roles are reversed at the instant of the second peak. For the second
slip-through motion at about t=0·66, the acoustic signals have sinusoidal peaks, which
have a different tendency from the first slip-through instant. Before the slip-through
motion, the minor axis directions of the two vortex rings are the same (see the shape at
t=0·54 in Figure 22). After the second slip-through motion at t=0·78, however, the
shape of ring A is changed into a shape like a cocoon, while the shape of ring B is changed
to the original elliptic shape. The time variation of the shape of vortex ring A significantly

Figure 23. The components of the sound signals due to the motion of two elliptic vortex ring, (b/a=0·6,
Dz0 =0·8). –·–·–·, Q	 11; – – – –, Q	 22; ——, Q	 33.
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Figure 24. A frontal view of two elliptic vortex rings with leap-frogging motion (b/a=0·6, Dz0 =2·0). The
bold line is initially the rearward elliptic vortex ring (ring A).

affects the acoustic signal of Q	 11 in the x1 direction, the amplitude of which is comparable
to the Q	 33 signals, as shown in Figure 23.

In Figure 24, we used the same value of b/a=0·6 and an initial separation distance of
Dz0 =2·0 with N=81 and Dt=0·001. We found that the switching of the two axes
occurred for vortex ring A at about t=0·4 and 0·88. The period of the axis switching for
vortex ring A is smaller than ring B, as shown in Figure 24. At t=1·0, one side of ring
A is very close to ring B. At that point, a high induced velocity makes that portion of the
filament rake shaped, and the other portion of ring A rushes out at high velocity. For these
reasons, the vortex filament of elliptic vortex ring A is highly deformed at t=1·24. When
the initial separation distance is larger than 2·0, switching phenomena involving more than
two axes will occur before the first leap-frogging motion. The period of the axis switching
is comparable to that of a single elliptic vortex ring (T=1·23). Then the axis switching
phenomena are expected to be a dominant process and will influence the periodicity of the
acoustic signals. Therefore, the dominant acoustic direction due to the pairing depends on
the initial gap distance. The acoustic signal is shown in Figure 25. Before the slip-through
motion, the acoustic signals have a similar trend to the single elliptic vortex ring, as shown
in Figure 13. The acoustic signals of Q	 11 and Q	 22 seem to become aperiodic because of the
pairing frequency for the system in addition to the axis switching frequencies. At the
instant of slip-through motion at t=1·12, the signal has a large acoustic peak, as shown
in Figure 25. Generally, the two frequencies are not the same. The frequencies influencing
the kinematic motions of the vortex rings and also the acoustic signals are dependent on
the aspect ratios of the elliptic vortex rings and the initial separation distances of the two
elliptic vortex rings.

5. CONCLUSIONS

In this study, we have obtained kinematic motions and acoustic fields numerically for
elliptic vortex rings, the motions of which are three-dimensional. For a single circular
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Figure 25. The components of the sound signals due to the motion of two elliptic vortex rings, (b/a=0·6,
Dz0 =2·0). –·–·–·, Q	 11; – – – –, Q	 22; ——, Q	 33.

vortex ring, the far field acoustic pressures have been compared with the analytic results,
and show a high level of agreement. For the case of a single elliptic vortex ring, the
evolution processes generated acoustic pressure fluctuations which were different from
those of a single circular ring. This difference is due to the axis switching motion of the
elliptic vortex ring, which has periodic pressure fluctuations for a moderate aspect ratio
of the minor and major axes. For the case of the two elliptic vortex ring pair, stronger
acoustic pressures were radiated in the minor axis direction than in the major one because
of the first leap-frogging motion, in addition to the pressure in the convection direction.
The axis switching phenomenon is also accompanied by the leap-frogging motion.
Therefore, three dominant eigenfrequencies exist: the first and the second from the axis
switching phenomena of each elliptic ring, and the third from the leap-frogging; that is,
the pairing phenomenon. These acoustic phenomena could be obtained by accurately
determining the vortex motions. The motions were calculated by interpolating the
discretized vortex filament with parabolic blending curves. The distorted curves were
redistributed at each time step to improve the resolution of the vortex filaments. The
motions and acoustic signals for the elliptic vortex rings are strongly dependent on the
aspect ratios of the minor to major axis lengths and the initial separation distances between
the two elliptic vortex rings.
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